Reference Potential Approach to the Quantum-mechanical Inverse Problem: Ii. Solution of Krein Equation
نویسنده
چکیده
A reference potential approach to the one-dimensional quantummechanical inverse problem is developed. All spectral characteristics of the system, including its discrete energy spectrum, the full energy dependence of the phase shift, and the Jost function, are expected to be known. The technically most complicated task in ascertaining the potential, solution of a relevant integral equation, has been decomposed into two relatively independent problems. First, one uses Krein method to calculate an auxiliary potential with exactly the same spectral density as the initial reference potential, but with no bound states. Thereafter, using Gelfand-Levitan method, it is possible to introduce, one by one, all bound states, along with calculating another auxiliary potential of the same spectral density at each step. For the system under study (diatomic xenon molecule), the kernel of the Krein integral equation can be accurately ascertained with the help of solely analytic means. At small distances the calculated auxiliary potential with no bound states practically coincides with the initial reference potential, which is in full agreement with general theoretical considerations. Several possibilities of solving the Krein equation are proposed and the prospects of further research discussed.
منابع مشابه
Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملAn Analytical Solution for Inverse Determination of Residual Stress Field
An analytical solution is presented that reconstructs residual stress field from limited and incomplete data. The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function. This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon. The analytical solu...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005